Domino Exclusion Problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The periodic domino problem revisited

In this article we give a new proof of the undecidability of the periodic domino problem. The main difference with the previous proofs is that this one does not start from a proof of the undecidability of the (general) domino problem but only from the existence of an aperiodic tileset. The formalism of Wang tiles was introduced in [Wan61] to study decision procedures for the ∀∃∀ fragment of the...

متن کامل

The Domino Problem for Self-similar Structures

We define the domino problem for tilings over self-similar structures of Z given by forbidden patterns. In this setting we exhibit non-trivial families of subsets with decidable and undecidable domino problem.

متن کامل

Implementing Domino-Parity Inequalities for the Traveling Salesman Problem

We describe an implementation of Letchford’s domino-parity inequalities for the (symmetric) traveling salesman problem. The implementation includes pruning methods to restrict the search for dominoes, a parallelization of the main domino-building step, heuristics to obtain planar-support graphs, a set of safe-shrinking routines, a random-walk heuristic to extract additional violated constraints...

متن کامل

Generalized Domino-Parity Inequalities for the Symmetric Traveling Salesman Problem

We extend the work of Letchford [Letchford, A. N. 2000. Separating a superclass of comb inequalities in planar graphs. Math. Oper. Res. 25 443–454] by introducing a new class of valid inequalities for the traveling salesman problem, called the generalized domino-parity (GDP) constraints. Just as Letchford’s domino-parity constraints generalize comb inequalities, GDP constraints generalize the m...

متن کامل

The Periodic Domino Problem Is Undecidable in the Hyperbolic Plane

In this paper, we consider the periodic tiling problem which was proved undecidable in the Euclidean plane by Yu. Gurevich and I. Koriakov, see [3]. Here, we prove that the same problem for the hyperbolic plane is also undecidable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Baltic Journal of Modern Computing

سال: 2020

ISSN: 2255-8950

DOI: 10.22364/bjmc.2020.8.4.02